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Natural convection in a bi-heater configuration of passive electronic cooling
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Abstract

The present work reports steady state simulation of natural convection in a horizontal, planar square cavity with two discrete heat sources
(representing power-dissipating semiconductor devices in electronics/MEMS applications), flush-mounted on its bottom wall. The heaters are
modeled as constant-flux heat sources. The sidewalls of the cavity are isothermal heat sinks. The top wall and the non-heated portions of the
bottom wall are adiabatic. Buoyancy-driven convection is simulated for varying length and/or strength ratios of the two heat sources, for a fixed
cavity size and a constant value of total thermal energy input. The computational study quantitatively depicts the critical roles played by the heater
length and heater strength ratios in ensuring that the devices operate within the ‘safe’ temperature limits specified by the manufacturer. Such
quantitative predictions help determine the range in which the heater sizes and/or flux strengths may be varied so that the conditions of operation
remain within the specified thermal limit.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Electronic devices produce heat as a by-product of normal
operation. As the power of these systems increases and the
space allotted to them diminishes, heat flux or density (heat per
unit area, W/m2) goes up to a large extent. When electrical
current flows through a semiconductor or a passive device, a
portion of the power is dissipated as heat energy. Besides the
damage that excess heat can cause, it increases the movement
of free electrons within a semiconductor, causing an increase in
signal noise [1]. Moreover, the junction temperature of a semi-
conductor device should always be kept below the maximum
safe operating temperature specified by the manufacturer, as
excessive heating adversely affects the performance, life and
reliability of the device.

The present work is motivated by the need of effective pas-
sive cooling for high-density packaging of electronic circuits
and MEMS devices. Increasing heat generation rate and in-
creasing component density demand more efficient heat re-
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moval for these devices. Natural convection is used extensively
for passive cooling of electronic devices. The method remains
a preferred choice since finned, air-cooled heat sinks and liquid
cooling suffer from the major drawbacks of increase in weight,
cost and volume [2]. Natural convection is also an area of inter-
est for enhancement of heat and mass transfer in bio-chemical
systems and in micro-fuel cell designs [3].

The electronic components have been treated as heat gen-
eration sources embedded on flat surfaces [4]. The finite-
sized heaters considered in the present work represent heat-
generating electronic components.

The majority of the published studies in the realm of nat-
ural convection in rectangular cavities [5–8] have considered
either vertically or horizontally imposed temperature gradient.
A growing body of work exists in the area of natural convection
heat transfer from discrete, flush-mounted heat sources owing
to its relevance in electronics [9–14] and MEMS applications.
The geometric parameters studied are the width-to-height as-
pect ratio of the air layer to the uniformly heated source size.

Several investigations [15–21,24] on studies of natural con-
vection in enclosures, conducted under isothermal or constant-
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Nomenclature

g gravitational acceleration . . . . . . . . . . . . . . . . . m/s2

Gr Grashof number
hx local heat transfer coefficient . . . . . . . . . . . W/m2 K
havg average heat transfer coefficient . . . . . . . . W/m2 K
H height of enclosure . . . . . . . . . . . . . . . . . . . . . . . . . . m
k thermal conductivity of air . . . . . . . . . . . . . . W/m K
L1 left heater length . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
L2 right heater length . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Nu Nusselt number
Pr Prandtl number
p∗ effective pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
P dimensionless static pressure
q ′′

1 left heater flux strength . . . . . . . . . . . . . . . . . . W/m2

q ′′
2 right heater flux strength . . . . . . . . . . . . . . . . . W/m2

q ′′
r flux strength ratio of heaters = q ′′

2 /q ′′
1

Ra Rayleigh number
S distance between heater centers . . . . . . . . . . . . . . . m
T dimensional temperature . . . . . . . . . . . . . . . . . . . . . K
TS(X) local temperature on heater surface . . . . . . . . . . . . K
u x-component of velocity . . . . . . . . . . . . . . . . . . . m/s
v y-component of velocity . . . . . . . . . . . . . . . . . . . m/s
U dimensionless x-component of velocity

V dimensionless y-component of velocity
xc dimensionless distance between heater centers
xl dimensionless distance between left heater center

and left wall
X dimensionless x-coordinate
Y dimensionless y-coordinate

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . m2/s
βρ fluid compressibility . . . . . . . . . . . . . . . . . . . . . . K−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . . m2/s
θ dimensionless temperature field
θS(X) dimensionless heater temperature
ε1 dimensionless length of left heater
ε2 dimensionless length of right heater
εr dimensionless length ratio
θ max,

heater
dimensionless maximum temperature on heater sur-

face
ψ stream function . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
ψmax maximum value of stream function . . . . . . . . m2/s
ψmin minimum value of stream function . . . . . . . . . m2/s
ρ0 free-stream density . . . . . . . . . . . . . . . . . . . . . kg/m3
flux heating conditions, have revealed the heat-transfer charac-
teristics through streamline and isotherm plots.

Deng et al. [22] suggested a combined temperature scale
to non-dimensionalize the governing equations of natural con-
vection induced by multiple temperature differences. Bazylak
et al. [23] made a computational analysis of the heat transfer
due to an array of heat sources on the bottom wall of a hori-
zontal enclosure and reported the bifurcations in the Rayleigh–
Bénard cell structures following the transition to a convection-
dominated regime, reflecting the instabilities in the selected
physical system. Calcagni et al. [26] conducted an experimen-
tal and numerical study of free convective heat transfer in a
square enclosure characterized by a discrete heater located on
the lower wall and cooled from the lateral walls, and stud-
ied the effect of increasing heater length. Bhowmik et al. [27]
performed experiments to study the single-phase heat trans-
fer characteristics on an array of four in-line, flush-mounted
simulated chips in a vertical up-flow rectangular channel dur-
ing steady-state operation to determine the overall heat transfer
coefficient. Cheikh et al. [28] conducted a numerical study of
natural convection in air-filled, two-dimensional square enclo-
sure heated with a constant source from below and cooled from
above, for a variety of thermal boundary conditions at the top
and sidewalls, for two kinds of heater source lengths. Chen
et al. [29] conducted numerical simulations of laminar, steady,
two-dimensional natural convection flows in a square enclosure
with discrete heat sources on the left and bottom walls. Ichimiya
et al. [30] numerically analyzed the behavior of two thermal
plumes from two heated portions on the bottom of an enclo-
sure, which was compared with visualization. Terrell et al. [31]
experimentally studied buoyancy-driven convection heat trans-
fer in open cavities, for different cavity sizes and inclination
angles, and found that the cavity Nusselt number (based on a
cavity averaged temperature) was insensitive to the transient de-
velopment of non-isothermal conditions within the cavity.

Efficient heat dissipation for optimal performance of MEMS
devices is often a crucial thermal design issue. Thermal analy-
sis of advanced microscale actuators/sensors and smart struc-
tures creates a need for optimal distribution of heating load
among devices when the over-all heat dissipation needs to be
maintained constant. This implies that on the design front, the
maximum temperature on any device should not exceed a cer-
tain prescribed value. The global objective is the maximiza-
tion of heat transfer density or the minimization of hot-spot
temperatures when the total heat generation rate, volume and
other constraints are specified [13]. Here we have studied a
steady-state natural heat transfer in a square enclosure. Such
a configuration can be representative of a cavity atop an elec-
tronic device or circuit board where the active heat sources
are flush-mounted on the bottom wall of the cavity. The com-
putational study incorporates a bi-heater placement to ana-
lyze the effects of varying heater lengths and strengths on the
maximum as well as the average temperature of the heaters,
under the constraint of constant overall heat input from the
sources. The geometrical parameters selected to quantify the
effect of different heater lengths/flux strengths are the non-
dimensional heater length/strength ratio. The variation in the
maximum temperature of the heaters as functions of vary-
ing heater lengths/strengths is explained through the stream-
lines, isotherms and heatline plots that aid in comprehension



1518 S. Banerjee et al. / International Journal of Thermal Sciences 47 (2008) 1516–1527
Fig. 1. Schematic of the physical system.

of the underlying physics of flow and heat transfer. Varying
the length/strength ratio of the heaters affects the thermal in-
teraction between the sources in their participation towards the
overall heat dissipation.

The effects of variation of pertinent geometrical parameters
as heater spacing, heater length and heater strength on natural
convection heat transfer for different boundary conditions has
been presented through a numerical study [32]. However, the
total heat input into the cavity by the heaters was not maintained
constant. The present analysis enables to correlate the optimum
value of heater strength ratio as a function of the heater length
ratio for the same overall heat input.

2. Mathematical model

The present computational work simulates a situation where
two line heat sources (representing power-dissipating electronic
devices) pump thermal energy inside a two-dimensional square
cavity at a steady rate. Fig. 1 illustrates the geometry and heat-
transfer boundary conditions of the chosen physical configura-
tion. The top wall and the non-heated portions of the bottom
wall are adiabatic. The sidewalls are maintained isothermally
cold at T = TC , providing the heat sinks. The height of the cav-
ity is H . The finite-sized heaters are of lengths L1 and L2, and
their flux strengths are, respectively, q ′′

1 and q ′′
2 . The dimen-

sionless length ε1 = L1/H of the left heater is kept fixed at a
value of 0.2, while the normalized right heater length (given by
ε2 = L2/H ) is varied. The distance between the centerlines of
the two heaters is S. The non-dimensional length S/H is kept
fixed at a value of 0.5. All boundaries satisfy the no-slip veloc-
ity conditions.

The steady state, two-dimensional continuity, momentum,
and energy equations governing the flow and heat transfer are
given by:

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u + v

∂u = − 1 ∂p∗
+ ν

(
∂2u

2
+ ∂2u

2

)
(2)
∂x ∂y ρ0 ∂x ∂x ∂y
u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ0

∂p∗

∂y
+ ν

(
∂2v

∂x2
+ ∂2v

∂y2

)
+ gβ(T − TC)

(3)

and

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+ ∂2T

∂y2

)
(4)

The maximum temperature difference is assumed to be small
enough to justify Boussinesq approximation. Here, p∗ is the ef-
fective pressure, defined as p∗ = p+ρ0gy, where p is the static
pressure. The above equations can be expressed in dimension-
less form as:

∂U

∂X
+ ∂V

∂Y
= 0 (5)

U
∂U
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+ V

∂U

∂Y
= −∂P

∂X
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∂2U

∂X2
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∂Y 2

)
(6)

U
∂V
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∂V

∂Y
= −∂P

∂Y
+ Pr

(
∂2V

∂X2
+ ∂2V

∂Y 2

)
+ Gr Pr2 θ (7)

U
∂θ

∂X
+ V

∂θ

∂Y
=

(
∂2θ

∂X2
+ ∂2θ

∂Y 2

)
(8)

Here, the x and y coordinates are normalized as: X = x/H ;
Y = y/H . U and V are the dimensionless velocity components
in the X and Y directions, non-dimensionalized as: U = u

α/H
;

V = v
α/H

. P is the dimensionless effective pressure, scaled as:

P = p∗

ρ0(α/H)2

θ is the dimensionless temperature, non-dimensionalized as
θ = (T − TC)/
T , where 
T is the temperature scaling de-
fined as 
T = q ′′

1 H/k.
In the context of scaled variables, the boundary conditions

are re-specified as follows:

Top wall: U = V = 0; ∂θ/∂Y = 0

Bottom wall: U = V = 0

∂θ/∂Y = 0 (0 < X < 0.25 − ε1/2)

∂θ/∂Y = −1 (0.25 − ε1/2 < X < 0.25 + ε1/2)

∂θ/∂Y = 0 (0.25 + ε1/2 < X < 0.75 − ε2/2)

∂θ/∂Y = −q ′′
r (0.75 − ε2/2 < X < 0.75 + ε2/2)

∂θ/∂Y = 0 (0.75 + ε2/2 < X < 1.0)

Right and left wall: U = V = 0; θ = 0

The condition ∂θ/∂Y = −1 and ∂θ/∂Y = −q ′′
r at the heater

surfaces arise as a consequence of constant heat flux boundary
condition. We define the local heat transfer coefficient h(X) =
q ′′/[TS(x) − TC] at a given point on the heat source surface
where TS(X) is the local temperature on the surface. Accord-
ingly, the local Nusselt number for the left and right heaters can
be obtained respectively as:

NuL(X) = 1/θS(X) (9)

NuR(X) = q ′′
r /θS(X) (10)

Here, NuL(X) and NuR(X) are the local Nusselt number for
the left and right heater surfaces. The average Nusselt number is
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Table 1
Grid-independence study

Grid size NuL %Change
in NuL

NuR %Change (absolute)
in NuR

θmax,L %Change (absolute)
in θmax,L

θmax,R %Change
in θmax,R

71 × 71 27.62 ≈0.25 10.23 ≈0.4 0.1155 ≈0.09 0.042 No change
141 × 141 27.69 10.19 0.1154 0.042
defined as Nuavg = havgH/k = (1/ε)
∫ ε

0 (1/θS(X))dX, where
θS(X) is the local dimensionless temperature.

The non-dimensional stream function ψ has been defined as
U = −∂ψ/∂X;V = ∂ψ/∂Y and the dimensionless heat func-
tion H has been defined as

∂H/∂X = −(V θ − ∂θ/∂Y ); ∂H/∂Y = (Uθ − ∂θ/∂X)

Natural convection heat transfer in the given physical system is
numerically simulated for varying heater length/strength ratios,
under the constraint of a constant value of overall heat input
from the sources. The Grashof number is referenced with re-
spect to the flux strength of the left heater, and the mathematical
equation that relates the Grashof numbers of the left heater for
any two cases (under the constraint of constant value of overall
heat energy input) is

GrL,i/GrL,b = (
1 + q ′′

r,bεr,b

)
/
(
1 + q ′′

r,iεr,i

)
(11)

Here, the Grashof number for the left heater for the reference
case is GrL,b and for any subsequent run is GrL,i . Similarly,
q ′′
r,b and q ′′

r,i refer to flux strength ratios for the base case and
any subsequent design situation, and the corresponding length
ratios are respectively denoted as εr,b and εr,i . (The derivation
of the above expression is placed in Appendix A.)

Eq. (11) represents a relation between the Grashof number
of the left heater, the heater strength ratio and the length ratio
chosen for a specific case, with respect to the corresponding
quantities chosen for the base case (under a situation of constant
thermal energy influx).

Choosing qr,b = εr,b = 1.0 (corresponding to the base sit-
uation of two heaters being of the same length and same flux
strengths), the Grashof number referenced with respect to the
left heater for an arbitrary design situation is related to the
Grashof number of the left heater for the base case as

GrL,i/GrL,b = 2/
(
1 + q ′′

r,iεr,i

)
(12)

In practical design, the heater length/strength ratio will de-
pend on a particular application. But, the above formula gener-
alized as

GrL,j /GrL,i = (
1 + q ′′

r,iεr,i

)
/
(
1 + q ′′

r,j εr,j

)
(13)

will always relate any two simulations for ith and j th run, for
which the total heat energy input from the two constant-flux
sources remains equal.

Using Eqs. (12) and (13) it is shown in Appendix A that,
for any two situations under the common constraint of con-
stant thermal energy input through two heaters of the same
length, the Grashof numbers of the left and right heaters are
interchanged between any two situations for which the heater
strength ratios are related as reciprocals. Physically, this means
that if we compare the streamline plots for two cases where the
strength ratios of heaters of same size are reciprocals of each
other, the streamline contours for one situation is the mirror im-
age of the contours for the other (the axis of reflection being the
vertical symmetry axis of the cavity). We shall take up this case
in a subsequent section to illustrate our point.

Next, we note that the maximum temperature on a heater
surface Tmax,heater is non-dimensionalized as θmax,heater =
(Tmax,heater − TC)/

q ′′
1 H

k
. Merely evaluating the maximum non-

dimensional value of temperature does not correspond to maxi-
mum value of dimensional temperature, as q ′′

1 used as a scaling
parameter varies. However, taking the product of the Grashof
number of left heater for any general ith run, GrL,i and the cor-
responding non-dimensional maximum heater surface temper-
ature θmax,i we obtain GrL,iθmax,i = (Tmax,i − TC)gβH 3/ν2,
so that the temperature on the left heater surface attains a
maximum when GrL,iθmax,i attains a maximum. The same
argument applies to the right heater. Similarly, the product
GrL,iθavg,i provides a quantitative estimate of the average tem-
perature on the left/right heater temperature rather than the
non-dimensional average temperature θavg,i itself. The Grashof
number chosen for the present computational study is 106

(Rayleigh number, Ra = 7.1 × 105). Convection-dominated
flow in the laminar regime has been reported earlier [19,30]
for similar Rayleigh number.

3. Numerical procedure

The coupled mass, momentum and energy equations are
solved by the Finite Volume Method. The SIMPLER algorithm
developed by Patankar [24] forms the basis for the present nu-
merical code. The set of algebraic equations are solved sequen-
tially by TDMA (Tri-Diagonal Matrix Algorithm) [24]. The
power-law differencing scheme by Patankar [24] is used for the
formulation of the convection contribution to the coefficients in
the equations. Solution is obtained by progressive minimization
of the mass residual. The computation is terminated when the
rms value of the residuals get below 10−10. The code is vali-
dated against the benchmark results of de Vahl Davis [25].

A 70 × 70-mesh size is considered for the square domain.
Along both X- and Y-directions, the mesh sizes follow a si-
nusoidal distribution within dense clustering of cells near the
solid boundaries and atop the heat sources where the gradients
of the field variables are high. The minimum and maximum
mesh sizes vary with different values of heater length ratio, but
the typical non-dimensional value of the minimum mesh size
is 1.2 × 10−2 and that of the maximum cell size is 2.4 × 10−2

(corresponding to q ′′
r = εr = 1.0).

As a check of grid independence, simulation is carried out on
a finer mesh of 140 × 140 cells for the situation when q ′′

r = 0.4
and εr = 1.0. Table 1 compares the values of the (left and right)
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heater Nusselt numbers (NuL,NuR), and the non-dimensional
values of the (left and right) heater maximum temperatures
(θmax,L, θmax,R) for the two situations. The above parameters
are very important for any heat transfer optimization study. It is
observed that the maximum deviation is less than 0.3%, which
justifies the use of 70 × 70 cells in the present study. Moreover,
the computational time to obtain a converged solution is three
times larger for 140 × 140 cells compared to 70 × 70 cells.

4. Results and discussions

Since electronic devices involve heater strips of different size
and heat dissipation rates, the constant-flux heaters embedded
on the lower cavity-wall studied here are chosen to be of differ-
ent lengths and flux strengths. A parametric study is performed
to probe the participation of the cold sidewalls in dissipating
the total heat input, under various combinations of heater sizes
and/or their flux strengths. The study is not only of theoretical
interest, but also finds immediate usage in the design of efficient
heat-removal systems in electronics and MEMS applications.
Simulations are carried out for heater length ratios ranging from
0.4–1.7 and for heater strength ratios ranging from 0.4–7, and
for all cases the total thermal energy input remains constant.
The working fluid is chosen as air (Pr = 0.71). The length of the
left heat source is kept fixed for all cases considered (ε1 = 0.2),
and the length of the right heat source is varied. The heater
length ratio εr (εr = ε2/ε1) accounts for the effect of varia-
tion of the size of the right heater. As the total thermal load is
invariant, the proportion of total energy input by the individual
heat sources depends both on their sizes (lengths), and on their
individual flux strengths. The non-dimensional parameter that
takes into account the varying flux strengths of the heat sources
is q ′′

r . Both εr and q ′′
r are varied in the present study to ana-

lyze the effects of these non-dimensional parameters on heat
transfer through the sidewalls. The phenomenon of heat trans-
fer through the cold sidewalls is systematically studied in the
following manner: for a particular value of εr , the flux strength
ratio is varied between 0.4–7. This exercise is repeated for dif-
ferent values of the heater length ratio in the chosen range of εr

values (0.4–1.7). The motivation for this computational study
is to analyze the effect of q ′′

r alone on heat dissipation from the
power-dissipating components. For the next phase of study, the
sole effect of εr on heat transfer is studied by keeping q ′′

r fixed
(at a particular value within its selected range) and εr is varied
through its selected range. As before, the exercise is repeated
through the chosen range of q ′′

r values.

4.1. Effect of heater strength ratio

Figs. 2(a), 2(b) and 2(c) depict the streamline, heatline and
isotherm plots for q ′′

r = 0.4, 0.5, 1.0, 2.0 and 3.0, when the
heaters are of the same size (εr = 1.0). As a heat transfer visual-
ization technique, the heatlines graphically depict the transport
of energy as a combination of both thermal diffusion and en-
thalpy flow. For q ′′

r = 0.4, the right heater strength is only forty
percent of the left heater. This implies that the portion of heat
input through the right heater is about twenty nine percent of
the total heat input (as the heaters are of the same length). The
constraint of total thermal energy pumped into the cavity re-
maining unchanged plays an interesting role in the evolution of
the flow field inside the cavity. As the heat dissipation boundary
conditions are symmetric for the chosen physical configura-
tion, participation of the left and right walls in heat dissipation
would remain same in the case of a bi-heater configuration
of equal size and equal flux strengths. Under such conditions,
the fraction of total thermal energy transfer through each of
the sidewalls would be exactly 0.5. When convective mode of
heat dissipation is predominant, this would correspond to two
counter-rotating recirculation vortices symmetric with respect
to the vertical central axis, one above each source (Fig. 2a.3).
However, when the heaters pump in unequal heat fluxes, the
convection rolls (set up as a consequence of density gradients)
draw heat from the site of higher flux density and dissipate it
through the wall on the same side as the weaker source. Un-
der any combination of unequal heater flux strengths, the role
of convection serves to burden the sidewall on the side of the
weaker source with higher fraction of heat dissipation. This
implies that the role of sidewalls with respect to heat dissi-
pation deviates from symmetry (at q ′′

r = 1.0) when the flux
strengths are unequal. In Fig. 2a.1 (for q ′′

r = 0.4), the dominant
re-circulation vortex above the right heater practically spreads
over the entire cavity. It serves as the dominant medium of
heat dissipation, and leads to the dissipation of the major por-
tion of heat through the right wall. The convection roll over
the left heater is squeezed up as a corner vortex. The domi-
nant right vortex indicates efficient heat dissipation from the
right heater surface, while the detached left-hand corner circu-
lation over the left heater indicates poor heat dissipation (and,
therefore, greater heat stagnation). A single recirculation over
the right heat source serves as the heat corridor for both the
heaters. Thus, for all situations corresponding to q ′′

r < 1.0, the
left heat source remains at a higher value of mean temperature
as compared to the right source. Also, the value of maximum
temperature on the left heater is expected to be higher. The
phenomenon of unequal participation by the sidewalls in dis-
sipating heat is visible from the heatfunction plot in Fig. 2b.1.
As the top wall is adiabatic, the heatlines are parallel to the top
wall in its immediate vicinity. The isothermal sidewalls corre-
spond to θ = 0 isotherm. The heatlines intersect the sidewalls
orthogonally, indicating that the heat transfer occurs at the wall
through conduction only. The majority of the heatlines termi-
nate on the right wall. The warping of the isotherms for the
case of q ′′

r = 0.4 (in Fig. 2c.1) clearly indicate the dominance of
the clockwise circulation over the right heater. The circulation
forces the major portion of the total thermal energy pumped into
the cavity to be dissipated through the right wall. The closely
packed isotherm contours in the vicinity of right wall indicates
high conductive heat transfer through the latter. This means that
the participation of the right wall in dissipating heat is greater.
The dense packing of isotherms over the left heat source in-
dicates its higher flux strength. At q ′′

r = 0.5, the recirculation
vortex over the left heater grows in intensity (see Fig. 2a.2).
Increasing q ′′

r increases the proportion of the heat supplied by
the right heater. The effect is an increased participation by the
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Fig. 2. (a) Streamfunctions, (b) heatfunctions, and (c) isotherms, at εr = 1.0 for different values of q ′′
r .
left wall in dissipating heat through strengthening of the left
roll. This is reflected in the diminished size of the right re-
circulation vortex over the right heater. The heatline plots for
q ′′
r = 0.5 (Fig. 2b.2) clearly depicts an increase in thermal trans-

port through the left wall, as compared to Fig. 2b.1. When q ′′
r

increases to a value 1.0, i.e. both the heaters dissipate the same
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amount of heat, the two rolls of advection become equal in
size (Fig. 2a.3). The corresponding heat line plots (Fig. 2b.3)
depict how both the sidewalls share the load of heat dissipa-
tion equally. The heat corridors are divided equally between the
walls, resulting in the symmetric layout of the heatlines with
respect to the vertical axis of symmetry. The isotherm plots in
Figs. 2c.2 and 2c.3, corresponding to q ′′

r = 0.5 and q ′′
r = 1.0, re-

spectively, show that the isotherms are increasingly crowded to
the left wall (as compared to that in Fig. 2c.1) with an increase
in q ′′

r . The increase in heat dissipation through the left wall re-
sults in lesser amount of energy stagnation over the left heater.
At the same time, the decrease in strength of the right recircu-
lation vortex increases the thermal energy stagnation over the
right heater. This implies that the mean temperature of the left
heater should decrease, while the mean temperature of the right
heater should increase as the strength ratio is increased. The
same trend is expected to be followed by the maximum tem-
peratures on the heater surfaces. The warping of the isotherm
contours (in Fig. 2c.2) is also less prominent, as the right vor-
tex diminishes in intensity and gives way to an increase in the
intensity of the left vortex. In Fig. 2c.3, the isotherm contours
are symmetrically spaced. As q ′′

r is increased, the right heater
pumps in a larger fraction of the total heat and the packing
of isotherm contours around the right heater become increas-
ingly dense. Increasing q ′′

r beyond unity implies that the right
heater is now dominant in pumping thermal energy into the
cavity. The effect is a deviation from the symmetric distribu-
tion in heat load (as depicted from the streamline, heatline and
isotherm plots in Figs. 2a.3, 2b.3, and 2c.3) to progressively
greater asymmetry. The burden on the left wall in dissipat-
ing the total thermal energy increases as q ′′

r increases. This is
reflected in the increased intensity of the left recirculation vor-
tex (over that of the right vortex) in the streamline plots for
q ′′
r = 2.0 (Fig. 2a.4) and q ′′

r = 3.0 (Fig. 2a.5), respectively.
For q ′′

r = 2.0, the right convection-roll is squeezed thin. The
dominant left roll induces a bulk counter-clockwise circulation,
enhancing dissipation through the left wall (see Fig. 2a.4). The
corresponding heat function plot consolidates our understand-
ing still further, and depicts how the majority of the heatlines
terminate on the left wall (see Fig. 2b.4). The isotherm plots for
q ′′
r = 2.0 depict the sharp temperature gradient in the immedi-

ate vicinity of the left wall due to dense packing of the isotherm
contours (Fig. 2c.4). The distribution of the contours clearly
deviates from symmetry (when compared with Fig. 2c.3). The
streamline plot for q ′′

r = 3.0 (Fig. 2a.5) indicates that the left
vortex practically occupies the entire cavity and squeezes the
right vortex as a small corner roll. Nearly entire heat trans-
fer takes place through the left wall. The situation indicates
a condition of high energy density over the right heater, with
consequent high stagnation of enthalpy. The maximum as well
as the mean temperature values of the right heater are also ex-
pected to be sufficiently high. The corresponding heatline plots
(Fig. 2b.5) depict that the dominant counter-rotating vortex over
the weak source ensures bulk transport of thermal energy to the
site of the left wall. The isotherm contours (Fig. 2c.5) show how
the left circulation warps the isotherm contours away from the
right wall and presses them against the left, thereby indicating a
site of high temperature gradients (and, hence, high conductive
flux) at the left wall. Beyond q ′′

r = 3.0, there is practically no
noticeable change in the streamline, heatline or isotherm plots.
Physically, this implies that any further biasing of heat transport
towards the cold left wall is only marginal.

Comparing the streamline plots for q ′′
r = 0.5 (Fig. 2a.2) and

q ′′
r = 2.0 (Fig. 2a.4), one can observe that the streamline plots

are simply mirror images of each other, the axis of reflection
being the vertical centre line of the cavity. The flux strength val-
ues are reciprocals of one another. From what has been proved
above and in the appendix, this makes the value of the Grashof
number for the left heater corresponding to q ′′

r = 0.5 (equal to
1.33 × 106) same as the value of the Grashof number for the
right heater corresponding to q ′′

r = 2.0 (and vice versa). In fact,
this phenomenon can be observed for any reciprocal set of flux
strength values, when the heaters are of the same size.

The above description of the flow field and the consequent
thermal energy transport to the site of the vertical cold walls,
as the flux strength ratio is varied, remains unchanged for any
chosen value of the length ratio. The streamline, heatline and
isotherm plots enable to explain the underlying physics govern-
ing thermogravitational transport.

4.2. Effect of heater length ratio

Next, we keep the value of the heater flux strength ratio
constant, and vary the heater length ratio alone. We choose
a representative value of q ′′

r = 1.0. Fig. 3 depicts the stream-
line, heatline and isotherm plots for representative values of the
heater length ratio, viz. εr = 0.4,0.75,1.0 and 1.7, respectively.
As in the previous discussion, these values of εr are chosen
for which the flow field and heat transport visualization con-
tours present a discernable shift from a previous trend. Given
that the heaters are of equal strength, the condition εr = 0.4 im-
plies that the length of the right heater is forty percent of the left
heater length. Thus, the rate of thermal energy pumped in by the
right heater is 0.4 times that of the left heater. The effect of this
is asymmetric heat dissipation through the cold sidewalls. The
right recirculation vortex becomes strong and the left vortex is
shrunk laterally. Clockwise circulation affects bulk convection
(Fig. 3a.1). The streamlines are closely spaced where the ad-
vection is strong, and spread out where the flow rate is weak.
Fig 3b.1 shows the corresponding heatline plots. The clockwise
roll affects bulk transport of heat to the right wall, from where
it is dissipated. From the heatline plot, it is evident that the right
wall is burdened with the maximum amount of heat dissipation.
The heatlines terminate normally at the cold sidewalls, indicat-
ing that the dissipation of heat at the sidewalls is by conduction
alone. The sparsely distributed contours at the upper portion
of the left roll indicate that the advection of heat to the left
wall is poor. For the corresponding portion of the right con-
tour, the dense packing of the heatlines indicates strong thermal
advection. The isotherm plots for εr = 0.4 (Fig. 3c.1) reveals
the predominance of the clockwise circulation in stretching the
isotherm contours away from the left wall and pressing them
against the right wall. This indicates that the conductive heat
flux is higher at the right wall than at the left. The isotherms
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Fig. 3. (a) Streamfunctions, (b) heatfunctions, and (c) isotherms, at q ′′ = 1.0 for different values of εr .
r
are closely packed at the site of the left heat source, which is
stronger of the two. As εr increases, the energy input through
the right heater increases. This reduces the asymmetry of heat
dissipation through the sidewalls. The proportion of the total
heat that escapes through the left wall increases progressively as
εr increases. The left recirculation vortex grows progressively
strong as εr increases (as revealed by the streamline plots in
Figs. 3a.2–3a.4). The left roll grows in intensity until symmetry
sets in at a heater length ratio of unity. Beyond εr = 1.0, the left
roll becomes dominating to the extent that at εr = 1.7 the left
vortex squeezes the right vortex (Fig. 3a.4). The increased in-
tensity of the left roll (with increasing value of the heater length
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ratio) would dissipate a greater amount of heat from the surface
of the left heater. Thus, the maximum temperature as well as
the mean temperature on the left heater surface is expected to
fall with increasing εr , at any value of the heater strength ra-
tio. For the right heater, the variation trend is expected to be
the opposite. The heatline plots (Figs. 3b.2–3b.4) indicate that
as εr increases, the left wall dissipates a progressively greater
amount of heat, with the result that at εr = 1.0, the heatline con-
tours are symmetric with respect to the vertical symmetry axis
of the cavity. At εr > 1.0, the left wall participates in dissipating
more than fifty percent of the total thermal influx (as depicted
in Fig. 3b.4). The symmetric structure (Fig. 3b.3) breaks down,
and the majority of the heatlines terminate on the left wall, in-
dicating the advection bias towards the left wall. The isotherm
plots (through Figs. 3c.2–3c.4) depict how the isotherm con-
tours increasingly cluster in the immediate vicinity of the right
heat source, as εr increases for a fixed strength ratio. This hap-
pens since the right-hand side component is now the dominant
power dissipater. The isotherms increasingly cluster around the
left wall with the increase in strength of the left vortex, so that
the conductive dissipation through the left wall progressively
increases as εr increases. The upper limit of εr for the present
study has been chosen keeping in mind the facts that the length
of the left heat source is fixed at εr = 0.2, so that increasing
the length ratio significantly beyond a value of 1.7 would mean
overlapping sources.

4.3. Heat transfer optimization

The competing effects of size-miniaturization and increasing
heat densities of electronic components pose major challenges
in the design of efficient heat-removal systems. The allow-
able thermal operating window for reliable performance of an
electronic device is a prime constraint for thermoanalysis of
electronic circuits. Within the permissible temperature range,
a priori information on the optimum range of variation in sizes
and/or thermal flux strength ratios of heat generation compo-
nents is vital from design standpoint. Having developed a feel
of the underlying physics through flow field and heat transport
visualizations (Figs. 2, 3) and keeping the above design chal-
lenges in view, we proceed to investigate the optimum allow-
able range of variation of heater sizes and/or their flux strengths
for the chosen bi-heater configuration. The maximum tempera-
ture on the surface of a heat source must always be kept below
the safe working temperature of a device as specified by the
manufacturer. Any combination of heater lengths and/or heater
strengths should conform to this fundamental requirement. Be-
sides the maximum temperature, it is also desirable to maintain
the average temperatures of the heat sources low, since this im-
plies efficient heat dissipation. A situation for which the average
and the peak temperatures are close (and of course, below the
maximum allowable temperature) should be targeted since that
allows the maximum heat dissipation from the heaters. This
would imply that there is no “hot spot”.

Eqs. (9) and (10) indicate that the non-dimensional average
temperature θavg on the surface of a heater gives an inverse esti-
mate of its average Nusselt number. Hence, any combination of
Fig. 4. Variation of Gr · θmax of the left and right heater versus heater length
ratio εr for different heater length ratios: (a) q ′′

r = 0.5, (b) q ′′
r = 1.0, and

(c) q ′′
r = 2.0.

heater length/strength ratio that keeps the average temperature
low would imply efficient heat dissipation.

Fig. 4 depicts the variation in the non-dimensional measure
of maximum temperature with the heater length ratio, at three
representative values of q ′′

r = 0.5, 1.0, and 2.0, respectively. The
quantity Gr · θmax is plotted along the ordinate as the appropri-
ate dimensionless measure of the maximum non-dimensional
temperature on the surface of a heater. The general conclu-
sions drawn from the discussions of the streamline, heatline and
isotherm plots in Fig. 3 are seen to be validated through the vari-
ation trends in Gr · θmax for the left and right heater. The value
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Fig. 5. Variation of Gr · θmax of the left and right heater versus heater strength
ratio q ′′

r for different heater length ratios εr : (a) εr = 0.5, (b) εr = 1.0, and
(c) εr = 1.5.

of Gr · θmax for the left heater falls with increasing εr while that
for the right heater increases. Within the chosen scale of ordi-
nate values, the variation for the latter reveals a flat trend. This
means, at a chosen value of q ′′

r , increasing the right heater size
does not result in substantial rise in its temperature. Within the
range of εr chosen, the intersection point of Gr · θmax for the
left and right heaters is obtained only for q ′′

r = 1.0 (Fig. 4(b)).
However, it can be seen that the intersection point has a charac-
teristic left shift with increasing q ′′

r .
Fig. 5 shows the variation in the non-dimensional measure

of maximum temperature on the left and right heater surfaces
with q ′′
r , at values of εr = 0.5, 1.0, and 1.5, respectively. The

nature of variation of Gr · θmax for the left and right heaters
with q ′′

r depicts a common trend (for different values of εr , as
evident in Fig. 5). The non-dimensional maximum temperature
on the left heater decreases with increasing q ′′

r . For the cho-
sen ordinate scale, the rate of decrease becomes small beyond
a certain value of the strength ratio. The non-dimensional max-
imum temperature on the right heater gradually rises, at first,
with increasing q ′′

r , but the rate of increase falls off at higher
strength ratio. This implies, at any value of εr , the heat dissi-
pation through the left wall becomes increasingly poor as q ′′

r is
diminished. In contrast, the heat dissipation through the right
wall is enhanced with decreasing q ′′

r . All these observations
conform to the conclusions drawn after the study of the global
plots in Fig. 2. The intersection points of the curves in Fig. 5
correspond to situations, where the maximum temperature any-
where on both the heaters assumes minimum value for a given
total heat input (denoted as q ′′

0 in Fig. 5) and a particular value
of heater length ratio. Therefore, for a given total influx of ther-
mal energy, a suitable combination of q ′′

r or εr that keeps the
maximum temperature on the heaters at the lowest, is desirable.

We focus on the common value of the non-dimensional max-
imum temperature attained by both the heaters, which we de-
note as (Gr · θ)0. From Figs. 5(a)–5(c), it may be observed
that (Gr · θ)0 has a monotonically decreasing trend with in-
creasing εr . In fact, this trend is observed for all cases of
non-dimensional heater length ratios considered in the present
simulation. Fig. 6(a) shows the functional relationship between
(Gr · θ)0 and εr in terms of a power law. For a given electronic
application, the safe operating temperature value (specified by
the manufacturer) limits the maximum value of (Gr · θ)0 in
Fig. 6(a). Accordingly, the value of εr can be determined from
the functional relationship provided in Fig. 6(a). Fig. 6(b) shows
the heater strength ratios that produce the respective (Gr · θ)0

for different εr values. The power law in Fig. 6(b) gives the
value of optimum flux strength ratio for any chosen length ra-
tio. From a designer’s perspective, Fig. 6(a) gives the minimum
value of εr for a specific (Gr · θ)0 determined by the maximum
permissible device temperature. Fig. 6(b) provides the corre-
sponding value of q ′′

r .

5. Conclusions

The study reports simulation of natural convection heat
transfer in a horizontal, two-dimensional square cavity with two
flush-mounted heat sources on the bottom wall. The ratio of
flux strengths of the heat sources and their lengths are taken
as variables, while keeping the total heat input to the cavity as
constant. The heat dissipation corridors are visualized and the
underlying physics governing the flow-field inside the cavity
has been studied from the standpoint of fundamental analy-
sis. The quantitative predictions of the allowable band/range of
operating variables are laid down for optimal conditions of op-
eration.

For any chosen value of length (strength) ratio:
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Fig. 6. Variations of (a) the common maximum temperatures of the heaters and
(b) corresponding heater strength ratios with heater length ratio.

• Increasing the strength (length) ratio shifts the burden of
greater fraction of heat dissipation from the right sidewall
to the left;

• The maximum temperature of the right heater rises, and
that of the left heater decreases monotonically with increas-
ing strength (length) ratio.

For any value of heater strength (length) ratio, there exists one
length (strength) ratio that produces equal maximum tempera-
ture on each heater. This condition also corresponds to a case
where the maximum temperature anywhere in the device has
the minimum value.

The specification of the maximum safe working temperature
limits the extent to which the heater length ratio can be reduced
since a lower value of length ratio would imply a higher value
of maximum temperature attained simultaneously by both the
sources. The optimum heater strength ratio that produces equal
maximum temperature on both heaters is presented as a func-
tion of heater length ratio.

For different values of εr , Fig. 5 indicates that if the heater
strength ratio is varied in either direction of q ′′

0 , the maximum
temperature on one of the heaters rises above (Gr · θ)0. This
means, q ′′

0 corresponds to a value of strength ratio for which
both the heaters can be operated safely, provided their common
maximum temperature (Gr · θ)0 remains within the permissi-
ble temperature level specified by the manufacturer. The power
law relationship between (Gr · θ)0 and εr in Fig. 6(a) provides
the values of εr for which both the heaters attain the same value
of maximum temperatures. Fig. 6(b) gives a power law rela-
tion to calculate q ′′

0 once the value of εr is determined from
Fig. 6(a). Thus, we have the desired set (q ′′

0 , εr ) corresponding
to a prescribed (Gr · θ)0. For any other combination of (q ′′

r , εr ),
maximum value of temperature on either one of the heaters ex-
ceeds (Gr · θ)0. The pair (q ′′

0 , εr ) gives the optimum operating
conditions in an electronic device for a specified permissible
thermal level of operation.
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Appendix A

Eq. (11) that relates the Grashof numbers of the left heater
for any two cases (under the constraint of constant value of
overall heat energy input) is derived as follows:

Assuming unit depth, the above physical requirement
amounts to

L1q
′′
1 + L2q

′′
2 = C (A.1)

where C stands for the constant value of heat input rate per unit
depth. Since L2/L1 = εr and q ′′

2 /q ′′
1 = q ′′

r we have

L1q
′′
1

(
1 + εrq

′′
r

) = C (A.2)

The Grashof number is referenced with respect to the left heater
as

GrL = q ′′
1 gβL4

1/kν2 (A.3)

From Eq. (A.2), we express the left-heater Grashof number as:

GrL = gβCL3
1/kν2(1 + εrq

′′
r

)
(A.4)

Thus we have GrL ∼ 1/(1 + εrq
′′
r ) (since the other terms are

constant).
The reference/base simulation corresponds to the situation

for which the Grashof number for the left heater is GrL,b . For
any other run, the Grashof number for the same is denoted as
GrL,i . Then, from Eq. (A.4)

GrL,i/GrL,b = (
1 + q ′′ εr,b

)
/
(
1 + q ′′ εr,i

)
(A.5)
r,b r,i
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Here, q ′′
r,b and q ′′

r,i refer to flux strength ratios for the base
case and any other design situation, respectively. Similarly, the
corresponding length ratios are respectively denoted as εr,b

and εr,i . Eq. (A.5) represents a relation between the Grashof
number of the left heater, the heater strength ratio and the length
ratio chosen for a specific case, with respect to the correspond-
ing quantities chosen for the base case for a given C.

For the ith run, the Grashof number for the left heater
is GrL,i = gβq ′′

L,iH
4/ν2k and that for the right heater is

GrR,i = gβq ′′
R,iH

4/ν2k, implying GrR,i = (q ′′
R,i/q

′′
L,i)GrL,i =

q ′′
r,iGrL,i . Hence, eliminating GrL,i using Eq. (12), we have:

GrR,i = 2q ′′
r,iGrL,b/

(
1 + q ′′

r,iεr,i

)
(A.6)

Choosing εr,i = 1.0, we obtain the Grashof numbers of the right
and left heater for the ith run in terms of the Grashof number of
the left heater for the base case and the heater strength ratio for
the ith run:

GrR,i = 2q ′′
r,iGrL,b/

(
1 + q ′′

r,i

)
(A.7)

and

GrL,i = 2GrL,b/
(
1 + q ′′

r,i

)
(A.8)

Similarly, from Eqs. (12) and (A.6), for any general j th run
with εr,j = 1.0, the Grashof number for the right heater is:

GrR,j = 2q ′′
r,j GrL,b/

(
1 + q ′′

r,j

)
(A.9)

and the Grashof number for the left heater is:

GrL,j = 2GrL,b/
(
1 + q ′′

r,j

)
(A.10)

If we now impose the condition that q ′′
r,j = 1/q ′′

r,i we finally
obtain:

GrR,j = 2GrL,b/
(
1 + q ′′

r,i

) = GrL,i (A.11)

GrL,j = 2q ′′
r,iGrL,b/

(
1 + q ′′

r,i

) = GrR,i (A.12)

Therefore, we have proved that the Grashof numbers of the
heaters can be interchanged between any two situations for
which the heater strength ratios are related as reciprocals.
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